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Abstract. We compare the Hamiltonian properties of the N-soliton solutions of the NLSE in the adiabatic
approximation and show how it matches the Hamiltonian formulation for the complex Toda chain which
describes the adiabatic N-soliton interactions.

PACS. 42.65.Tg Optical solitons – 02.30.Ik Integrable systems – 45.20.J Hamiltonian mechanics

1 Introduction

It is well known (see [1–4] and the references therein)
that the N -soliton train interactions in the adiabatic
approximation is described by the complex Toda chain
(CTC). More precisely this means the following. Let
us consider the solution of the nonlinear Schrödinger
equation (NLSE):

iut +
1
2
uxx + |u|2u(x, t) = 0, (1)

satisfying the initial condition

u(x, t = 0) =
N∑

k=1

u1s
k (x, t = 0), (2)

where u1s
k (x, t) is the one-soliton solution of the NLSE:

u1s
k (x, t) = 2νkeiφ̃ksech zk, zk = 2νk(x− µkt− ξ0,k),

φ̃k =
µk

νk
zk + δk(t), δk(t) = 2(µ2

k + ν2
k)t+ δ0,k, (3)

and νk, µk, ξ0,k and δ0,k are the kth soliton amplitude,
velocity, initial position and phase. The solution deter-
mined by (2) is known as the N -soliton train (NST). It is
an approximation to the exact N -soliton solution to the
NLSE because some (small) part of its energy comes from
excitations over the continuous spectrum [5].

The adiabatic approximation means that the solitons
are well separated and can be viewed as separate entities.
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It is valid provided the soliton parameters: νk, µk, ξk and
δk, satisfy [6]:

|νk − ν0| � ν0, |µk − µ0| � µ0,

ν0r0 � 1, |νk − ν0|r0 � 1, (4)

where ν0 =
∑N

k=1 νk/N and µ0 =
∑N

k=1 µk/N are the
average amplitude and velocity and r0 is the average dis-
tance between the neighbouring solitons. We also assume
that initially the soliton are quasi-equidistant, i.e.:

ξ0,k+1 − ξ0,k � r0, k = 1, . . . , N − 1. (5)

This approximation allows one to view the evolution of
the NST as a slow evolution of its 4N parameters. The
main result in [1–4] consists in proving that if we define
qk(t) by:

qk+1(t) − qk(t) = −2ν0(ξk+1 − ξk) + ln 4ν2
0

+i[π + 2µ0(ξk+1 − ξk) − δk+1 + δk], (6)

then the evolution of the NST is described by:

d2qk
dτ2

= eqk+1−qk − eqk−qk−1 , k = 1, . . . , N, (7)

assuming τ = 4ν0t and eqN+1 ≡ eq0 ≡ 0. The system (7)
known as the CTC generalizes the well known Toda chain,
see [7].

The NST is close to the exact N -soliton solution which
is a completely integrable Hamiltonian system with 2N
degrees of freedom. We shall see that the same is true
also for the CTC system. Our aim in the present pa-
per is to make a comparative analysis between these two
Hamiltonian systems.
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2 Preliminaries

The NLSE (1) is one of the famous equations integrated by
the inverse scattering method, see [8,9]. The Lax operator
here is given by the Zakharov-Shabat system:

L(λ)ψ ≡ i
dψ
dx

+ (q(x, t) − λσ3)ψ(x, t, λ) = 0, (8)

q(x, t) =
(

0 u∗(x, t)
u(x, t) 0

)
, lim

x→±∞ q(x, t) = 0.

Indeed the NLSE (1) can be written down in the Lax form,
i.e. it can be viewed as the compatibility condition

[L(λ),M(λ)] = 0, (9)

where M(λ) determines the time evolution of the family
of common eigenfunctions ψ(x, t, λ). Equation (9) may be
used to express the coefficients of M(λ) in terms of q, qx
and qxx thus verifying that (9) and (1) are equivalent.

One of the consequences of the Lax representation
is that each solution of the NLSE can be parametrized
through the spectral data of (8). The Lax operator L(λ)
(8) has a continuous spectrum which fills up the real axis
in the complex λ-plane. It may also have a finite number
of pairs of discrete eigenvalues λ+

k = (λ−k )∗, Imλ+
k > 0,

j = 1, . . . , N which correspond to the N -soliton solution
of (1). The NST is generically characterized by N pairs of
discrete eigenvalues and some small contribution from the
continuous spectrum which will be neglected.

Let us denote the scattering matrix T (λ) of (8) by

T (λ, t) =

(
a+(λ) −b−(λ, t)

b+(λ, t) a−(λ)

)
. (10)

and assume that u(x, t) satisfies the NLSE. Then the ele-
ments of T (λ, t) satisfy linear evolution equations [9]:

i
da±

dt
= 0, i

db±

dt
∓ 2λ2b±(λ, t) = 0. (11)

An important tool to study the interrelations between
the solutions of the NLSE and the scattering data of L(λ)
are the trace identities, see [9]. They relate the two pos-
sible ways to write down integrals of motion: a) in terms
of the solution of NLSE and b) in terms of the scattering
data. Below we will need the first three of them:

C1 =
∫ ∞

−∞
dx|u|2, C2 =

i
2

∫ ∞

−∞
dx(u∗xu− u∗ux),

C3 =
∫ ∞

−∞
dx(|ux|2 − |u|4), . . . , (12)

Ck =
2ki
k

N∑
j=1

(
(λ−j )k − (λ+

j )k
)
, k = 1, . . . , N, (13)

where λ±j are the discrete eigenvalues of L(λ).
The action-angle variables for the NLSE related to the

discrete spectrum of L are given by (see [8,9]):

η±k = ±λ±k , κ±k = ∓ ln b±k , k = 1, . . . , N, (14)

where λ±k are the discrete eigenvalues of (8) and b±k are
the normalization coefficients of the corresponding Jost
solutions. Their evolution is provided by (τ = 4ν0t):

dη±k
dτ

= 0,
dκ±k
dτ

= ∓ (λ±k )2

2iν0
· (15)

The Hamiltonian equals:

HNLSE =
1
4
C3 =

2i
3

N∑
k=1

(
(λ−k )3 − (λ+

k )3
)
. (16)

Of course these results are strictly valid for the exact N -
soliton solutions.

Next we need the Hamiltonian formulation of the TC.
The Hamiltonian is provided by:

HTC =
N∑

k=1

p2
k

2
+

N−1∑
k=1

eqk+1−qk , (17)

where pk and qk are canonically conjugate dynamical vari-
ables:

{pk, qs} = δks. (18)

The Lax representation of TC is in the form, see [7]:

dLTC

dτ
= [LTC,M ], (19)

LTC =
N∑

k=1

BkEkk +
N−1∑
k=1

Ak(Ek,k+1 + Ek−1,k), (20)

Bk =
pk

2
, Ak =

1
2
e(qk+1−qk)/2, (21)

where the N ×N matrices (Ekj)mn = δkmδjn.
The TC is a completely integrable Hamiltonian system

whose action-angle variables are determined by [7]

{ζk, ρk = ln rk, k = 1, . . . , N}, (22)

where ζk are the eigenvalues of the Lax matrix (19) and
rk = v

(k)
1 is the first component of the corresponding

normalized eigenvector v(k), i.e.:

LTCv(k) = ζkv(k), (v(k),v(k)) = 1. (23)

If Ak and qk are real, then both ζk and ρk also take
real values; in addition ζk are pair-wize distinct [7]. The
evolution of the action-angle variables of the TC is given
by:

dζk
dτ

= 0,
dρk

dτ
= −ζk. (24)

The trace identities for the TC system follow from the
relations:

Ip = tr (LTC)p =
N∑

k=1

(ζk)p, p = 1, . . . , N. (25)
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In particular,

I2 =
N∑

k=1

B2
k +

N−1∑
k=1

2A2
k =

N∑
k=1

ζ2
k , (26)

and in view of (21) and (17) we get I2 = (1/2)HTC.

3 Hamiltonian formulation of CTC

The step that brings us from TC to CTC is called complex-
ification, see [10]. This is a rather formal step after which
the dynamical variables, and also the Hamiltonian be-
come complex. The next step which is possible due to the
fact that HTC depends analytically on the dynamical vari-
ables is the following. We consider the complexified phase
space MC with 2N complex dimensions as a real 4N -
dimensional phase space spanned by the real and imagi-
nary parts of pk = p0,k + ip1,k and qk = q0,k + iq1,k. The
symplectic structure in this 4N -dimensional real phase
space is introduced by:

{p0,k, q0,s} = δks, {p1,k, q1,s} = −δks. (27)

Then the Hamiltonian equations of motion provided
by (27) and the Hamiltonian:

HCTC = Re

(
N∑

k=1

p2
k

2
+

N−1∑
k=1

eqk+1−qk

)
=

N∑
k=1

p2
0,k − p2

1,k

2
+

N−1∑
k=1

eq0,k+1−q0,k cos(q1,k+1 − q1,k),

(28)

coincide with the equations of motion for the CTC. Thus
we can view the CTC as a standard Hamiltonian system
with 2N degrees of freedom, see, e.g. [4].

Due to the analyticity ofHTC a number of properties of
the Toda chain easily generalize to the CTC. These include
the integrability properties, the action-angle variables, the
explicit form of the solutions and the trace identities (25).
The difference is that now the integrals of motion Ip as well
as the eigenvalues ζk become complex valued. In particular
I1 = N(µ0 + iν0)/2 is the simplest integral of motion for
CTC and I2 provides the Hamiltonian HCTC.

It is natural to expect that the integrals of motion
Ck of the NLSE in the adiabatic approximation will go
into integrals of motion of the CTC, up to terms whose
t-derivatives are of the order of ε3/2 ln ε. To check this we
will evaluate Ck, k = 1, 2, 3 in terms of the NST param-
eters. To this end we will evaluate the integrals in (12)
with u(x, 0) given by (2). This gives us three types of
terms: i) ‘local’ in k terms that will be of order of 1; they
give the contribution from uk only; ii) terms coming from
the overlap of two neighbouring solitons; they depend on
k and k + 1 and have orders ε ln ε and ε. These we will
evaluate explicitly. iii) various other terms of higher or-
ders in ε which will be dropped. Skipping the details (see

the Appendix) we give the answer:

C1 =
N∑

k=1

4νk − 8
N−1∑
k=1

ReRk,k+1, (29)

C2 =
N∑

k=1

8νkµk − 16
N−1∑
k=1

Re (λ0Rk,k+1)

−8
N−1∑
k=1

Im eqk+1−qk , (30)

C3 =
N∑

k=1

16νk

(
µ2

k − ν2
k

3

)
− 32

N−1∑
k=1

Re (λ2
0Rk,k+1)

−32
N−1∑
k=1

Im (λ0eqk+1−qk), (31)

where λ0 = µ0 + iν0, Rk,k+1 = (ξk+1 − ξk)eqk+1−qk , and
qk+1 − qk is given in (6).

Our first result is the explicit form of the terms Rk,k+1

which are of the order ε ln ε; they are known as ‘secular’
terms [4]. Next we note that from (29–31) there follows
the relation:

4(µ2
0 + ν2

0 )C1 − 4µ0C2 + C3 = const.+ 32ν0HCTC, (32)

where the constant term in the right hand side is an ex-
pression depending only on µ0 and ν0. Indeed, it is easy
to see that in the left hand side of (32) the secular terms
cancel out.

One can expect that all the higher integrals Ip can be
obtained as the adiabatic approximations from a conve-
niently chosen linear combination of Ck’s.

4 Evolutions of the action-angle variables

The adiabatic approximation imposes restrictions on soli-
ton parameters of the NST (6) which reflect on the scat-
tering data of the Zakharov-Shabat system (10). Skipping
the details of their derivation we just formulate them:

|λ+
k − λ0|2 � O(ε), λ0 =

1
N

N∑
k=1

λ+
k . (33)

and λ−k = (λ+
k )∗. In other words the eigenvalues of L(λ)

in the C+ are clustered around their average value; the
radius of the region is determined by ε1/2. The conditions
on the angle variables are similar:

|κ+
k − κ0| � O(ε), κ0 =

1
N

N∑
k=1

κ+
k . (34)

The same type of constraints hold also for the scattering
data of LCTC (22):

|ζ+
k − ζ0|2 � O(ε), |ρ+

k − ρ0| � O(ε), (35)

where ζ0 = 1
N

∑N
k=1 κ

+
k and ρ0 = 1

N

∑N
k=1 ρ

+
k .
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However the evolution of the action-angle variables for
the NLSE (15) and for the CTC (24) look substantially
different. This is due to the fact that the dispersion laws
for the NLSE and CTC are given by:

fNLSE(λ) = λ2, fCTC(λ) = λ, (36)

respectively. In order to make the comparison we need
to separate the dynamical variables for the ‘center
of mass’ and introduce the sets {λ0, λ̃

+
k , κ0, κ̃

+
0 } and

{ζ0, ζ̃+
k , ρ0, ρ̃

+
0 } where

λ̃+
k = λ+

k − λ0, κ̃+
k = κ+

k − κ0, (37)

ζ̃+
k = ζ+

k − ζ0, ρ̃+
k = ρ+

k − ρ0. (38)

It is easy to check that ρ0 and ρ̃k satisfy:

dρ0

dτ
= ζ0,

dρ̃k

dτ
= −ζ̃k. (39)

Analogous simple calculation shows that the evolution of
κ0 and κ̃k is given by:

dκ0

dτ
= − 1

2iν0

(
λ2

0 − 〈λ̃2〉
)
,

dκ̃k

dτ
= − λ0

iν0
λ̃k − 1

2iν0

(
λ̃2

k − 〈λ̃2〉
)
. (40)

where 〈λ̃2〉 = 1/N
∑N

k=1 λ̃
2
k = O(ε). Note that the lead-

ing terms in the right hand sides of (40) correspond to a
linear dispersion law characteristic for the CTC. So if we
prove that ζk � λ+

k then we prove also the equivalence
of the NST dynamics to the CTC one as completely in-
tegrable Hamiltonian systems. It is now easy to see the
relation between (39) and (40) or (42). Indeed, let us fix
up the reference frame of the NST in such a way that
µ0 = Reλ0 = 0. Then λ0 = iν0 and neglecting the terms
of order O(ε) in the right hand side of (40) we recover (39).

Let us now briefly discuss the NST dynamics for the
higher NLSE. They are characterized by dispersion law
F (λ) which is cubic or higher order polynomial in λ. Then
the angle variables evolve according to:

dκ+
k

dτ
= −F (λ+

k )
2iν0

, (41)

which means that

dκ0

dt
= −F (λ0)

2iν0
− F ′′(λ0)

4iν0
〈λ̃2〉 + . . . ,

dκ̃k

dt
= −F

′(λ0)
2iν0

λ̃+
k − F ′′(λ0)

4iν0

(
λ̃2

k − 〈λ̃2〉
)

+ . . . ,(42)

where the dots mean terms of higher order in ε. The equiv-
alence between (39) and (42) is established in analogy with
the previous case. The only difference is in the coefficient
in front of λ̃+

k which can be taken care of.
From this point of view one can understand the univer-

sality of the CTC in the sense that it describes the NST
dynamics for the higher NLSE. Recently this understand-
ing was extended by showing that the CTC is responsible
for the interactions of the NST related to the modified
NLSE [11] and to the multicomponent NLSE [12].

5 Stability of the N-soliton bound states

In this section we briefly analyze some aspects of the sta-
bility of NST bound states. In [1–3] we noted that the
asymptotic regime of the NST is determined by ζk. In
particular, if Re ζk = 0 for all k = 1, . . . , N then all N
solitons form a bound state (BS); if all Re ζk are pair-wize
distinct then we have an asymptotically free (AF) regime
in which each soliton moves uniformly with its asymptotic
velocity µk,as = 2Re ζk.

Let us now remember that the Hamiltonian of CTC
can be expressed in terms of ζk as follows:

(1/2)HCTC = Re tr (LCTC)2 =
N∑

k=1

(
(Re ζk)2 − (Im ζk)2

)

= −N (Im (ζ0))
2+

N∑
k=1

(
(Re ζ̃k)2−(Im ζ̃k)2

)
.(43)

In deriving the last expression we used the assumption
that the average velocity Re ζ0 = 0.

Let us parameterize the phase space of the NST by the
action-angle variables of the CTC and let us consider in
it the sphere determined by

S ≡
N∑

k=1

|ζk|2 =
N∑

k=1

(
Re (ζk)2 + Im (ζk)2

)
= const. (44)

Note that S is an integral surface different from the one of
the Hamiltonian HCTC. On S the N -soliton bound state
will have minimal energy which could explain its stability.
In all other regimes: AF or mixed regimes one or more of
the eigenvalues ζk will have non-vanishing real parts and
therefore their energy will be greater than the one for the
BS regime.

This stability shows also by the fact that for some
choices of the parameters all N solitons may travel quasi-
equidistantly for times much longer than the critical time
Tcr � ε−1 ln ε, for more details see [13]. We illustrate this
fact in Figure 1 in which r0 = 8 and Tcr � 372. We have
checked that the same type of behaviour persists to dis-
tances of 12 000 dispersion lengths.

Such quasi-equidistant propagation, if it can be
achieved experimentally, might be important for soliton-
based fiber optics communications. The problem is that
the configurations of the soliton parameters responsible
for it are rather difficult to achieve.

Appendix

In this appendix we will illustrate how it is possible to
evaluate explicitly one of the typical integrals

Jkn =
∫ ∞

−∞

dxei(φ̃k−φ̃n)

cosh zk cosh zn
, (45)

that appear in calculating Ck in terms of the soliton pa-
rameters. We will see also that this integral is responsible
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Fig. 1. Quasi-equidistant propagation of 8 solitons. The initial
solitons parameters are 2ν1 = 2ν5 = 0.85, 2ν2 = 2ν6 = 1.0,
2ν3 = 2ν7 = 1.15, 2ν4 = 2ν8 = 1.3, ξk+1,0− ξk,0 = 8, δk,0 = 0.0
and µk,0 = 0 for all k = 1, . . . , 8.

for the ‘secular’ terms in Ck. As we will see below this inte-
gral is of order ε ln ε which allows for some additional sim-
plifications. First we note that zk−zn = 2(νk−νn)x+αkn

and φ̃k − φ̃n = 2(µk − µn)x+ φk − φn where

αkn = 2νnξn − 2νkξk � 2ν0(ξn − ξk),

and φk = φ̃k|x=0. Since νk−νn and µk−µn are of the order
ε1/2 then we can neglect these differences in the integrand
with the result:

Jkn = ei(φk−φn)

∫ ∞

−∞

dx
cosh zk cosh(zk + αkn)

=
ei(φk−φn)

νkAkn

∫ ∞

0

dy
(y + 1)(y + 1/A2

kn)

= ei(φk−φn) 2Akn lnAkn

νk(A2
kn − 1)

, (46)

where Akn = exp(αkn) and we have applied the change
of variables y = e2zk and used the fact that dzk/dx =
2νk. With this simple change after the approximations
described above all the integrals in Ck easily reduce to
integrals of rational functions that are easy to calculate.
In order to get the final result we have to keep in mind
that Ak,k±1 � exp(2ν0(ξk − ξk±1)) � ε±1, which follow
from the assumption (5).
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